The Age of Wonder, according to Holmes, ended with the first meeting of the British Association for the Advancement of Science (BAAS) in York in 1831. By that time the three giants, Joseph Banks, William Herschel, and Humphry Davy, had grown old and feeble and finally died. The three young leaders who took their places were the mathematician Charles Babbage, the astronomer John Herschel, and the physicist David Brewster. Babbage led the attack on the old regime in 1830 with a book, Reflections on the Decline of Science in England. He attacked the dignitaries of the Royal Society in London as a group of idle and incompetent snobs, out of touch with the modern world of science and industry. The professional scientists of France and Germany were leaving the English amateurs far behind. England needed a new organization of scientists, based in the growing industrial cities of the north rather than in London, run by active professionals rather than by gentleman amateurs. The BAAS was set up according to Babbage's specifications, with annual meetings held in various provincial cities but never in London. Membership grew rapidly. At the third meeting in Cambridge in 1833, the word "scientist" was used for the first time instead of "natural philosopher," to emphasize the break with the past. Victoria was not yet queen, but the Victorian Age had begun.I love the popular writing of Freeman Dyson. He is a smart guy with wide interests. I find him fascinating. It helps that he connects with my favourite physicist: Richard Feynman. The two shared a car trip across the US shortly after WWII.
Holmes's history of the Age of Wonder raises an intriguing question about the present age. Is it possible that we are now entering a new Romantic Age, extending over the first half of the twenty-first century, with the technological billionaires of today playing roles similar to the enlightened aristocrats of the eighteenth century? It is too soon now to answer this question, but it is not too soon to begin examining the evidence. The evidence for a new Age of Wonder would be a shift backward in the culture of science, from organizations to individuals, from professionals to amateurs, from programs of research to works of art.
If the new Romantic Age is real, it will be centered on biology and computers, as the old one was centered on chemistry and poetry. Candidates for leadership of the modern Romantic Age are the biology wizards Kary Mullis, Dean Kamen, and Craig Venter, and the computer wizards Larry Page, Sergey Brin, and Charles Simonyi. Craig Venter is the entrepreneur who taught the world how to read genomes fast; Kary Mullis is the surfer who taught the world how to multiply genomes fast; Dean Kamen is the medical engineer who taught the world how to make artificial hands that really work.
Each achievement of our modern pioneers resonates with echoes from the past. Venter sailed around the world on his yacht collecting genomes of microbes from the ocean and sequencing them wholesale, like Banks who sailed around the world collecting plants. Mullis invented the polymerase chain reaction, which allows biologists to multiply a single molecule of DNA into a bucketful of identical molecules within a few hours, and after that spent most of his time surfing the beaches of California, like Davy who invented the miners' lamp and after that spent much of his time fly-fishing along the rivers of Scotland.
Dean Kamen builds linkages between living human brains and mechanical fingers and thumbs, like Victor Frankenstein, who sewed dead brains and hands together and brought them to life. Page and Brin built the giant Google search engine that reaches out to the furthest limits of human knowledge, like William Herschel, who built his giant forty-foot telescope to reach out to the limits of the universe. Simonyi was chief architect of software systems for Microsoft and later flew twice as a cosmonaut on the International Space Station, like the intrepid aeronauts Blanchard and Jeffries, who made the first aerial voyage from England to France by balloon in 1795.
There are obvious differences between the modern age and the Age of Wonder. Now we have a standing army of many thousands of professional scientists. Then we had only a handful. Now science has become an organized professional activity with big budgets and big payrolls. Then science was a mixture of private hobbies and public entertainments. In spite of the differences, there are many similarities. Holmes remarks that in 1812 "Portable Chemical Chests" began to go on sale in Piccadilly, priced between six and twenty guineas. These contained equipment and materials for serious amateur chemists.
Their existence proves that some of the fashionable ladies and gentlemen who swarmed to Davy's public lectures at the Royal Institution either did real chemical experiments in their homes or encouraged their children to do such experiments. Last year I received as a Christmas present a "Portable Genome Chest," a compact disc containing a substantial amount of information about my genome. My children and grandchildren, and our spouses, got their compact discs too. By comparing our genomes, we can measure quantitatively how much each grandchild inherited from each grandparent.
This article by Dyson is filled with interesting bits. Here's something about the human genome:
An important step toward an understanding of the genome is the recent work of David Haussler and his colleagues at the University of California at Santa Cruz, published in the online edition of Nature, August 16, 2006. Haussler is a professional computer expert who switched his interest to biology. He never dissected a cadaver of mouse or human. His experimental tool is an ordinary computer, which he and his students use to make precise comparisons of genomes of different species. They discovered a small patch of DNA in the genome of vertebrates that has been strictly conserved in the genomes of chickens, mice, rats, and chimpanzees, but strongly modified in humans. The patch is called HAR1, short for Human Accelerated Region 1. It evolved hardly at all in three hundred million years from the common ancestor of chickens and mice to the common ancestor of chimpanzees and humans, and then evolved rapidly in six million years from the common ancestor of chimpanzees and humans to modern humans.Go read the article. It is fun and filled with facts that will dazzle you. And... he presents you with a wondrous vision of a better future. This is something that is sorely missing today: a story with a happy ending. It is only a conjecture, but it is profoundly satisfying to me. We need more hope. We need to look to the future.
During the last six million years, eighteen changes became fixed in this patch of the human germ line. Some major reorganization must have occurred in the developmental program that this patch helps to regulate. Another crucial fact is known about HAR1. It is active in the developing cortex of the embryo brain during the second trimester of the mother's pregnancy, the time when the detailed structure of the brain is organized. Haussman's team found another similar patch of DNA in the vertebrate genome which they call HAR2. It is active in the developing wrist of the human embryo hand. The brain and the hand are the two organs that most sharply differentiate humans from our vertebrate cousins.
The discovery of HAR1 and HAR2 is probably an event of seminal importance, comparable with the discovery of the nucleus of the atom by Ernest Rutherford in 1909 or the discovery of the double helix in the nucleus of the cell by Francis Crick and James Watson in 1953. It opens the door to a new science, the study of human nature at the molecular level. This new science will profoundly change the possible applications of biological knowledge for good or evil. It may give us the key to control the evolution of our own species.
No comments:
Post a Comment