Thursday, January 20, 2011

Science & Truth

There is an excellent article by Jonah Lehrer entitled "The Truth Wears Off" in the New Yorker magazine. Here's a key bit:
Jonathan Schooler was a young graduate student at the University of Washington in the nineteen-eighties when he discovered a surprising new fact about language and memory. At the time, it was widely believed that the act of describing our memories improved them. But, in a series of clever experiments, Schooler demonstrated that subjects shown a face and asked to describe it were much less likely to recognize the face when shown it later than those who had simply looked at it. Schooler called the phenomenon “verbal overshadowing.”

The study turned him into an academic star. Since its initial publication, in 1990, it has been cited more than four hundred times. Before long, Schooler had extended the model to a variety of other tasks, such as remembering the taste of a wine, identifying the best strawberry jam, and solving difficult creative puzzles. In each instance, asking people to put their perceptions into words led to dramatic decreases in performance.

But while Schooler was publishing these results in highly reputable journals, a secret worry gnawed at him: it was proving difficult to replicate his earlier findings. “I’d often still see an effect, but the effect just wouldn’t be as strong,” he told me. “It was as if verbal overshadowing, my big new idea, was getting weaker.” At first, he assumed that he’d made an error in experimental design or a statistical miscalculation. But he couldn’t find anything wrong with his research. He then concluded that his initial batch of research subjects must have been unusually susceptible to verbal overshadowing. (John Davis, similarly, has speculated that part of the drop-off in the effectiveness of antipsychotics can be attributed to using subjects who suffer from milder forms of psychosis which are less likely to show dramatic improvement.) “It wasn’t a very satisfying explanation,” Schooler says. “One of my mentors told me that my real mistake was trying to replicate my work. He told me doing that was just setting myself up for disappointment.”

Schooler tried to put the problem out of his mind; his colleagues assured him that such things happened all the time. Over the next few years, he found new research questions, got married and had kids. But his replication problem kept on getting worse. His first attempt at replicating the 1990 study, in 1995, resulted in an effect that was thirty per cent smaller. The next year, the size of the effect shrank another thirty per cent. When other labs repeated Schooler’s experiments, they got a similar spread of data, with a distinct downward trend. “This was profoundly frustrating,” he says. “It was as if nature gave me this great result and then tried to take it back.” In private, Schooler began referring to the problem as “cosmic habituation,” by analogy to the decrease in response that occurs when individuals habituate to particular stimuli. “Habituation is why you don’t notice the stuff that’s always there,” Schooler says. “It’s an inevitable process of adjustment, a ratcheting down of excitement. I started joking that it was like the cosmos was habituating to my ideas. I took it very personally.”

...

The most likely explanation for the decline is an obvious one: regression to the mean. As the experiment is repeated, that is, an early statistical fluke gets cancelled out. The extrasensory powers of Schooler’s subjects didn’t decline—they were simply an illusion that vanished over time. And yet Schooler has noticed that many of the data sets that end up declining seem statistically solid—that is, they contain enough data that any regression to the mean shouldn’t be dramatic. “These are the results that pass all the tests,” he says. “The odds of them being random are typically quite remote, like one in a million. This means that the decline effect should almost never happen. But it happens all the time! Hell, it’s happened to me multiple times.” And this is why Schooler believes that the decline effect deserves more attention: its ubiquity seems to violate the laws of statistics. “Whenever I start talking about this, scientists get very nervous,” he says. “But I still want to know what happened to my results. Like most scientists, I assumed that it would get easier to document my effect over time. I’d get better at doing the experiments, at zeroing in on the conditions that produce verbal overshadowing. So why did the opposite happen? I’m convinced that we can use the tools of science to figure this out. First, though, we have to admit that we’ve got a problem.”
This is fascinating stuff. It doesn't show that "science fails". It shows that scientists are merely human and subject to cognitive bias as well as other pressures (career, grants, etc. that push them to find "positive" results). The article goes into good depth to explain the problem. It doesn't offer any solution. But it makes clear that science has a problem and is less secure than the average person would think. But science remains the only effective technique we have for understanding the world. It just means that are tools are less effective than we had hoped.

This is a revolution in just the same way as going from classical physics (solid objects, precise locations, observer is irrelevant to the measurement) to quantum physics where the world is much more complex and entertwined and "iffy". Quantum physics has to give up classical causality and precise measurements, but it has very solid results using a statistical approach.

For me the above is fun to consider. Yet again the world is even more complex than we thought. It is a far more interesting place than our simple theories would first lead us to believe. Humans get demoted again. This time from precise scientists to an issue in interpreting results. Now scientists need to be much more careful in their experiments to ensure that they themselves don't screw up their own experiement by their unconscious biases or the other subtle pressures which could affect their measurements.

No comments: