Saturday, April 11, 2009

Mystery Solved: Bee CCD Deaths Now Understood

The following is the key part from a Scientific American article describing the sleuthing that has gone into solving the Colony Collapse Disorder (CCD) disease that has been wiping out bee hives. The good news is that bee keepers now have information to help reduce losses. The bad news according to these researchers is that there is no easy fix, so bee populations may continue to fall which means ever greater impact on food production:
... one bee virus stood out, as it had never been identified in the U.S.: the Israeli acute paralysis virus, or IAPV. This pathogen was first described in 2004 by Ilan Sela of the Hebrew University of Jerusalem in the course of an effort to find out why bees were dying with paralytic seizures. In our initial sampling, IAPV was found in almost all though not all colonies with CCD symptoms and in only one operation that was not suffering from CCD. But such strong correlation was not proof that IAPV caused the disease. For example, CCD could have just made the bees exceptionally vulnerable to IAPV infection.

From subsequent work on IAPV, we know that at least three different strains of the virus exist and that two of them infect bees in the U.S. One of the strains most likely arrived in colonies flown in from Australia in 2005 after the U.S. government lifted a ban on honeybee importation that had been in effect since 1922. (The almond industry lobbied to lift the ban to prevent a critical shortage of pollinators at blossom time.) The other strain probably showed up earlier and is quite different. Where that one came from is unknown; it may have been introduced by way of importation of royal jelly (a nutrient bees secrete to feed their larvae) or a pollen supplement, or it may have hitchhiked into the country on newly introduced pests of bees. The data also suggest that IAPV has existed in bees in other parts of the world for a while, developing into many different strains and possibly changing rapidly.

...

Additional sampling efforts by several groups showed, however, that IAPV was widespread in the U.S. and that not all infected colonies had symptoms of CCD, implying either that IAPV alone cannot cause the disease or that some bees are predisposed to be IAPV-resistant. In particular, a joint study the two of us initiated in 2007 with the USDA has tracked colonies owned by three traveling beekeepers and has observed colonies that were infected with IAPV without collapsing. Some of those colonies have later been able to rid themselves of the virus.

The growing consensus among researchers is that multiple factors such as poor nutrition and exposure to pesticides can interact to weaken colonies and make them susceptible to a virus-mediated collapse. In the case of our experiments in greenhouses, the stress of being confined to a relatively small space could have been enough to make colonies succumb to IAPV and die with CCD-like symptoms. More recent results from long-term monitoring have identified other unexpected factors for increased colony loss, including the fungicide chlorothalonil. Research is now focused on understanding how these factors relate to colony collapse.

A vaccine or cure for bee viruses and IAPV specifically would be desirable. Unfortunately, vaccines will not work on honeybees, because the invertebrate immune system does not generate the kind of protection against specific agents that vaccines induce in humans and other mammals. But researchers are beginning to pursue other approaches, such as one based on the new technique of RNA interference, which blocks a virus from reproducing inside a bee's cells. A longer-term solution will be to identify and breed virus-resistant honeybees. Such an effort could take years, though, perhaps too many to avoid having a large number of beekeepers go out of business.

Meanwhile many beekeepers have had some success at preventing colony loss by redoubling their efforts at improving their colonies' diets, keeping infections and parasites such as varroa and nosema in check, and practicing good hygiene. In particular, research has shown that sterilizing old beehive frames with gamma rays before reusing them cuts down the risk of colony collapse. And simple changes in agricultural practices such as breaking up monocultures with hedgerows could help restore balance in honeybees' diets, while providing nourishment to wild pollinators as well.
The earlier part of this article went into all the wild thinking about the disease. Without explicitly saying it, this article points out how scientific thinking and research solved this problem. Too many people think and act irrationally or use frameworks which are unsound so they are unable to solve their problems. The lesson I draw from this article is that more funding needs to be directed toward science and scientific methodology and the sciences need to be taught more rigorously in the schools.

Science is what will secure us a better future. Feel good nostrums or naive "spirituality" may appeal to a lot of people, but when it comes to actually producing a better quality of life, lifting people out of poverty, enabling better medicine, science is the engine. Sadly, you couldn't tell this by the way public funds are allocated. Worse, there is a very, very large portion of the population who are antagonistic to science. They litterally bite the hand that feeds them. Sad.

No comments: